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A B S T R A C T   

β-Ga2O3 is a promising material for the development of next-generation power electronic and optoelectronic 
devices due to its exceptional properties, including ultrawide bandgap and thermodynamic stability. Strain 
engineering has emerged as a powerful method to modulate the physical properties of materials and has been 
widely employed in semiconductor devices to enhance their performance and functionality. Our study focuses on 
the effects of strain engineering on the electronic properties of β-Ga2O3. Using density functional theory, we 
calculated the band structures and electron effective masses of β-Ga2O3 under different strain states. Our 
investigation revealed that strain manipulation can induce an indirect-direct bandgap transition. Strain can also 
lead to changes in effective masses and anisotropy of electron mobility. Our calculations provide important 
insights into the potential of strain engineering as a powerful tool for modulating the electronic properties of 
β-Ga2O3, with important implications for practical device applications.   

Introduction 

Gallium oxide (Ga2O3) is one of the ultra-wide bandgap semi-
conductor materials with excellent material properties that have been 
extensively studied for its potential in various fields, including solar- 
blind UV photodetectors, gas sensors, photocatalysts, light-emitting di-
odes, and high-power electronic devices [1–11]. Its wide bandgap makes 
it suitable for high-voltage applications [12], and its high n-type con-
ductivity and large optical bandgap make it a promising transparent 
conducting oxide for UV optoelectronic devices [13]. Among the six 
different polymorphs of Ga2O3, the monoclinic β phase is the most 
abundant and stable, owing to its exceptional chemical and thermal 
stability [14]. 

It is widely recognized that strain engineering is a powerful approach 
for modulating physical properties and enhancing the performance of 
electronic and photonic devices [15–23]. Strained silicon technology, in 
particular, has been extensively used in modern microelectronics, 
including CMOS devices, optoelectronic devices, sensors, and logic de-
vices [24]. Considering that Young’s modulus of β-Ga2O3 (150–190 

GPa) is close to Young’s modulus of silicon (130–190 GPa) [25,26], 
strain engineering is also potentially feasible in the electronic property 
modulation of β-Ga2O3. Currently, strain engineering has been widely 
applied to Ga2O3 and Ga2O3-based materials. Theoretical predictions of 
the bandgap tunability of α-Ga2O3 by hydrostatic, uniaxial, and equi-
biaxial strains have been reported by Ref. [27]. Calculations for the ef-
fects of uniform and epitaxial strain on the band structure of κ-Ga2O3 are 
also illustrated [28]. However, limited experimental studies have 
explored the strain effects on bulk β-Ga2O3. One recent study examined 
the effects of hydrostatic strain on the electronic properties (such as 
band structure, carrier effective mass and carrier mobility) of β-Ga2O3, 
revealing its band gap modulation, phase transition behavior, and 
anisotropic characteristics [29]. Another experimental study demon-
strated the modification of the bandgap in β-Ga2O3 sheet through elastic 
strain using a modified bending method [30]. These results demonstrate 
the promising potential of strain engineering as an effective approach to 
enhance the performance of β-Ga2O3-based devices. 

Based on the aforementioned research, it is suggested that strain can 
modify the bandgap of β-Ga2O3, leading to changes in its physical 
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properties. It is worth noting that β-Ga2O3 is an indirect-bandgap ma-
terial [31], which can limit its light emission efficiency. Additionally, 
the n-type conductivity of β-Ga2O3 is comparatively lower than other 
semiconductor materials such as SiC and GaN, which can reduce device 
performance [32]. Therefore, achieving a direct bandgap of β-Ga2O3 and 
studying the impact of strain on the electron effective mass is crucial, as 
this property can affect the material’s electron conductivity, ultimately 
influencing device performance. In our study, we specifically investi-
gated the impact of different types of strain (uniaxial, biaxial, and 
isotropic) on the structural parameters, bandgap structure, and electron 
effective mass of β-Ga2O3. While the aforementioned study primarily 
focused on hydrostatic strain [29], which is a more reasonable choice 
compared to isotropic strain, they did not consider uniaxial and biaxial 
strain. In contrast, our study innovatively incorporated these strain 
types, which are easier to apply in practical applications such as 
epitaxial growth. The results of our calculations will be valuable for fully 
realizing the potential of strain-engineered β-Ga2O3 in power electronics 
and optical applications. 

Method 

The structure and electronic properties of β-Ga2O3 are calculated 
using the first-principles plane-wave pseudo-potential method based on 
density functional theory (DFT). All calculations are carried out by 
PWmat, a GPU-based plane-wave pseudopotential code for DFT simu-
lations [33]. The exchange–correlation potential is employed through 
the generalized gradient approximation (GGA) within the Perdew- 
Burke-Ernzerhof (PBE) function [34] and Optimized Norm-Con-
serving⋅Vanderbilt pseudopotentials [35]. Plane-wave cut-off energy of 
70 Ry have been used for all structures. Before property calculations, 
geometry optimization is required to be converged. The number of 
Monkhorst-Pack k-point sampling [36] in the Brillouin zone is 2 × 9 × 5 
for the structural relaxation of the conventional cell containing 20 
atoms. Subsequently, the optimized cell structure is transformed into a 
primitive unit cell containing 10 atoms for saving calculation time. In 

the self-consistent field (SCF) and density of states (DOS) calculations, 
the kmesh-resolved value is set at the same accuracy level of 0.035 (in 
the unit of 2π/Å) using VASPKIT [37]. The convergence accuracy of total 
energy and force are 0.005 eV/atom and 0.005 eV/Å, respectively. The 
strain dependence of effective masses in the main CB valleys is evalu-
ated. The carrier effective masses (m*) is shown in Eq. (1) 

1
m∗

=
1
ħ2

∂2E
∂k2 (1)  

where m* is the effective mass, ℏ is the reduced Planck constant, E in-
dicates the energy, and k is the wave vector in the reciprocal lattice. The 
values of m* are obtained by fitting the energy dispersion of conduction 
band minimum to a parabolic function along different k directions in the 
vicinity of Γ. For the sake of higher accuracy and computational feasi-
bility, the GGA + U method is adopted (see the Supplementary material 
for more details). 

Fig. 1(a) shows the conventional unit cell and polyhedra of β-Ga2O3. 
The lattice parameters of the conventional cell, a = 12.05 Å, b = 3.00 Å, 
c = 5.74 Å, and β = 103.55◦, are in good agreement with the previously 
reported values (a = 12.23 Å, b = 3.04 Å, c = 5.80 Å, and β = 103.7◦) 
[38].There are two inequivalent Ga sites: Ga (I) and Ga (II). The Ga (I) 
atoms are bonded to four neighboring O atoms and the Ga (II) atoms are 
bonded to six neighboring O atoms. The calculated average bond lengths 
of Ga1-O and Ga2-O are 1.816 Å and 1.969 Å, respectively. Based on the 
calculated strain-free structure, the sizes of the strained lattice constants 
are determined. Three types of strain, uniaxial, biaxial, and isotropic 
strain with respect to three cell vectors a, b, and c are illustrated in Fig. 1 
(b–d), where the directions of induced and optimized strain ( εind and 
εopt) are represented by arrows. The strains along the a-, b-, and c-axes 
are defined as εa = (a − a0)/a0, εb = (b − b0)/b0, and εc = (c − c0)/c0, 
where a0, b0 and c0 are lattice constants at the strain-free state, 
respectively. Uniaxial strain is simulated by straining the lattice constant 
along b-axes while relaxing the other two constants. Biaxial strain is 
simulated by stretching the lattice constants along a- and c-axes 

Fig. 1. (a) The conventional unit cell of β-Ga2O3 and the polyhedra of β-Ga2O3 with bond lengths and atom sites indicated. Schematic illustrations of (b) uniaxial (c) 
biaxial, and (d) isotropic strain models. The O atoms and two non-equivalent Ga atoms are distinguished by different colors. The orange and blue arrows represent 
induced strain (εind) and optimized strain (εopt), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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simultaneously while relaxing that along b-axes. Isotropic strain is 
imposed by scaling all three lattice constants by the same factor. All 
calculations are carried out using 11 data points, covering a range of 
strain values from − 10% to 10%, with a step of 1%. 

Results and discussion 

Lattice structure 

The structure relaxation of strained β-Ga2O3 is performed firstly, and 
the results are shown in Fig. 2(a), which depicts the optimized changes 
in εa, εb, and εc as functions of the corresponding induced strain at each 
strain state. 

In the application of uniaxial and biaxial strain models, the opti-
mized strain is observed to decrease as the corresponding induced strain 
increases (see Fig. 2(a)). Of note is that the changes of optimized strain 
under uniaxial strain (εa and εc) are significantly smaller than that under 
biaxial strain (εb), with the biggest difference at –10% strain (εa =

3.36%, εc = 0.96% vs. εb = 7.70%). According to the Poisson effect, the 
optimized strain tends to change in the opposite trend of induced strain. 
Since the Poisson ratio of biaxially strained β-Ga2O3 is higher, it is 
reasonable that the changes in the structural parameters under biaxial 
strain are more pronounced. This phenomena has also been reported in 
the theoretical calculations concerning α-Ga2O3 [27] and κ-Ga2O3 [28]. 

Fig. 2(b) depicts lattice deformation, described by strain-induced 
bond length changes. As shown in Fig. 1(a), β-Ga2O3 has two inequi-
valent Ga sites and three inequivalent O sites, and the bond lengths 

between Ga1 (or Ga2) and the surrounding O atoms are close. Therefore, 
we calculated the average bond lengths of Ga1-O and Ga2-O, denoted as 
b1 and b2, respectively. It is found from Fig. 2(b) that the bond length 
variation between Ga1-O and Ga2-O are more or less proportional to 
induced strain in the investigated strain range, which indicates that 
there are no qualitative changes in the electronic structure of our relaxed 
strain model. These results further confirmed that our calculations are 
justified under the given conditions. 

Band structure 

To have a complete image of the electronic band structure behavior 
under strains, the strain-induced changes on bandgaps are firstly 
determined. As given in the Supplementary material, the calculated 
band structure and DOS of unstrained β-Ga2O3 using GGA + U approach 
are represented in Fig. S1(a, b), yielding results close to other theoretical 
and experimental values [39–41]. Fig. 3(a–c) illustrates the strain 

Fig. 2. (a) Optimized strain values and (b) bond lengths of β-Ga2O3 under different strain states: uniaxial, biaxial, and isotropic, which correspond to induced 
strain values. 

Fig. 3. Strain-induced effects on the bandgap of β-Ga2O3 as functions of (a) uniaxial, (b) biaxial, and (c) isotropic strain. The vertical lines indicate the strain point 
where indirect-to-direct transition occurs. 

Table 1 
The maximum and minimum bandgap values and the corresponding strain 
values at each strain state.  

State Maximum Minimum 

Eg/eV εind(%) Eg/eV εind(%) 

Uniaxial (εind = εb) 5.62 –9%  3.61 10% 
Biaxial (εind = εa,c) 5.15 –4%  3.23 10% 
Isotropic (εind = εa,b,c) 8.14 –10%  2.51 10%  
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dependence of the direct bandgap Edirect
g , indirect bandgap Eindirect

g , and 

the energy difference ΔEg (ΔEg = Edirect
g − Eindirect

g ) for the three strain 

states: uniaxial, biaxial, and isotropic. The vertical lines indicate the 
strain point where indirect-to-direct bandgap transition occurs. Table 1 
shows the list of maximum and minimum values of bandgap and the 
corresponding critical point under each strain state. It is known that 
achieving large strain in β-Ga2O3 can be challenging due to its relatively 
high elastic modulus and anisotropic monoclinic crystal structure [30]. 

Therefore, we conducted additional calculations for three different 
strain types within the range of − 1% to 1%, with a step size of 0.2%. This 
finer approach enables a more detailed analysis of the strain-induced 
variations in bandgap and the transition from indirect to direct 
bandgap, as indicated in Fig. 3. The detailed figure, illustrating the 
comprehensive view of the bandgap variations within the − 1% to 1% 
range, can be found in Fig. S2. 

In the case of uniaxial or biaxial strain, the bandgap decreases as 
tension increases, while regarding compression, the bandgap slightly 
increases as compression increases within a certain range, and then 
begins to decrease with further compression, as indicated in Fig. 3(a, b). 
According to Table 1, the maximum bandgap value of 5.62 eV or 5.15 eV 
is achieved by applying compressive strain at − 9% or − 4%, respectively. 
On the other hand, the minimum bandgap value of 3.61 eV or 3.23 eV is 
observed under tensile strain at 10%. With regard to the isotropic strain, 
the bandgap evolution is almost linearly reduced as a function of strain 
(see Fig. 3(c)). The value of the bandgap decrease monotonously from 
8.14 to 2.51 eV as the lattice strain increases within the investigated 
range. We note here that the change on the bandgap is significantly 
larger than that of uniaxial and biaxial strain, especially at − 10% stain 
where drastic increasing of bandgap occurs, indicating the impact of 
isotropic change on the electronic property is stronger compared with 
the case of uniaxial and biaxial strain. 

The underlying mechanism of bandgap evolution in β-Ga2O3 can be 

Fig. 4. Band structure evolution of β-Ga2O3 with respect to ±10% and ±5% (a) uniaxial, (b) biaxial, and (c) isotropic strain. The bandgap value of unstrained 
β-Ga2O3 (4.91 eV) is set as reference, the Fermi level is aligned to zero, and the arrows represent the directions from VBM to CBM. 

Table 2 
The average values of electron effective mass in β-Ga2O3 
with different functionals, where m0 is the free electron 
mass.  

Functionals m*
e/m0 

GGA + U 0.353 (This work) 
0.22–0.28 [54] 

GGA 0.12–0.13 [48] 
LDA 0.23–0.24 [45] 
Gau-PBE 0.22–0.30 [49] 
HSE06 0.39 [52] 

0.28 [46] 
B3LYP 0.34 [51] 
Experiment 0.28 [40,50]  
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attributed to the strain-induced variations in the Ga-O bond length, 
which ultimately affect the distance between the conduction band and 
valence band. This phenomenon involves band repulsion, observed in 
various semiconductor and insulator materials [42,43], whereby the 
bandgap increases under compression and decreases under tension. 
However, when uniaxial or biaxial strain is applied, the light-hole (LH) 
band moves up under tensile strain, while the heavy-hole (HH) band 
moves up under compressive strain [15]. This leads to an inversion of 
the HH and LH bands at higher compression, resulting in a reduction of 
the bandgap with increasing compressive strain. This behavior has been 
reported in the literature for α-Ga2O3 [27] and κ-Ga2O3 [28] as well. 

To understand the strain-induced changes in the bandgap charac-
teristics in more detail, bandgap directness at each strain state is 
investigated, and the band structure of β-Ga2O3 at ±10% and ±5% 
strain is plotted in Fig. 4(a–c). The arrows represent the directions from 
VBM to CBM. Originally, the unstrained β-Ga2O3 features an indirect 
bandgap of 4.91 eV with the CBM at Γ point and the VBM at the Σmax 
point along the M2-D line, which corresponds to that reported in 
Ref. [44]. Of note is that the CBM remains at Γ point of the Brillouin zone 
in all cases. However, the VBM shifts to different k points due to strain- 
induced changes in lattice symmetry and Brillouin zone size, which ul-
timately affects the bandgap and band-edge properties. 

From Fig. 3(a–c) and Fig. 4(a–c), the indirect-to-direct bandgap 
transition generally appears in uniaxial or isotropic tensile strain, as well 
as at biaxial compressive strain. As indicated in Fig. 4(a), when uniaxial 
compression is applied, the VBM remains at the Σmax point along M2-D 
line and changes to A point after exceeding − 8% strain. While under 
tension, the VBM undergoes a shift from the Σmax point to Γ point after 
exceeding 1% strain, resulting in a direct bandgap for β-Ga2O3. Similar 
parabolic variation characters are also observed in the case of isotropic 
strain, as displayed in Fig. 4(c). The VBM remains at the Σmax point along 
M2-D line and changes to Δ point, which is located near to the Γ point, 
for compressive strains exceeding − 5%. When the tensile strain sur-
passes 4%, it becomes a direct-bandgap semiconductor. Of note is that, 
when the tensile strain exceeds 9%, the bandgap changes to indirect 
again with the VBM situated at A point. Intriguingly, for biaxial strain 
applied to β-Ga2O3, an opposite trend for the shift of bandgap directness 
is observed. The VBM remains at Σmax point along M2-D line and 

transitions to a point near the A point for tensile strains exceeding 8%. 
Conversely, for biaxial compressive strains greater than − 0.6%, the 
VBM is located at the Γ point, as shown in Fig. 4(b). 

When the strained β-Ga2O3 turns into a direct-bandgap semi-
conductor, it would exhibit a significant enhancement in its optical 
transitions around the fundamental adsorption edge, due to the elimi-
nation of phonon involvement to facilitate adsorption or emission. Ac-
cording to our results, the bandgap value of β-Ga2O3 can be modulated 
using strain engineering to exhibit better performance in power elec-
tronics and optical applications. Additionally, uniaxial or isotropic 
tensile strain and biaxial compressive strain can help to achieve direct 
gap material that benefits photon emission and absorption, indicating 
that bandgap tunning is manually feasible by introducing strain. 

Electron effective mass 

To further investigate the electron properties of β-Ga2O3, we calcu-
lated the effective mass under different strain states. Given the scarcity 
of p-type β-Ga2O3, we calculated the hole effective mass of β-Ga2O3, 
with the results detailed in the Supplementary material. However, due 
to the complex and highly anisotropic nature of hole effective mass and 
significant variations in previous results [45–47] for unstrained 
β-Ga2O3, establishing a clear relationship between hole effective mass 
and p-type conductivity remains challenging. Therefore, our study pri-
marily focuses on electron effective mass. Specifically, we calculated the 
electron effective mass along three crystal directions (Γ − Y2 [− 1 1 0], 
Γ − M2 [− 111], and Γ − A [001]), denoted as m*

a , m*
b, m*

c respectively. As 
presented in the Supplementary material, the electron effective mass of 
unstrained β-Ga2O3 is nearly isotropic. Reported results for the electron 
effective mass in β-Ga2O3 exhibit a wide range of values depending on 
different functionals and software methods [40,48–54,45,46], as shown 
in Table 2. Due to the differences in methodologies used in Functional 
analysis, there may be variations in band structure, such as the bandgap 
values. Thus, the determination of mass, relying on CBM, is prone to 
discrepancies resulting from variations in functional approaches. Addi-
tionally, although both our study and Ref. [54] employed GGA + U, it is 
important to note that differences in the assigned U values might 

Fig. 5. Electron effective masses of β-Ga2O3 as functions of (a) uniaxial, (b) biaxial, and (c) isotropic strain and (d) changes on the electron effective mass ratio under 
each strain state. The dashed line represents the average electron effective mass and mass ratio of strain-free β-Ga2O3. 
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contribute to the divergent mass results obtained. Nonetheless, Our 
calculated average value of the electron effective mass in β-Ga2O3 
(0.353 m0) aligns consistently with several previous studies [51,52]. 

Next, we analyzed the dependence of electron effective mass of 
β-Ga2O3 on different strain states. The corresponding results are shown 
in Fig. 5(a–c). The strain-induced change on electron effective mass is 
discussed by considering the average value of the electron effective mass 
(m*

ave) in the three directions. For qualitative investigation of anisotropy, 
the ratio of the maximum and minimum values (m*

max/m*
min) in m*

a , m*
b, 

m*
c is introduced, as shown in Fig. 5(d). The values of m*

ave/m0 and m*
max/

m*
min at different strain states are listed in Table S2. 

A closer inspection of changes in the band structure with the increase 
in strain reveals that as the bandgap shrinks, the electron valleys at the 
CBM become increasingly “sharp” (see Fig. 4). In fact, from the k⋅p 
perturbation theory, electron effective mass (m*

c) at the Γ point is 
approximately proportional to the bandgap value [55,56]. In each strain 
state, there is an almost linearly decreasing relationship between elec-
tron effective mass and strain, as shown in Fig. 5(a–c). We observed a 
modest decrease in m*

ave with increasing isotropic strain (from 0.478 to 
0.312), except for high applied tensile strain (>8%), while the variation 
of m*

ave under biaxial strain exhibits a similar decreasing trend (from 
0.450 to 0.346). When uniaxial strain is applied, a slight reduction (from 
0.351 to 0.339) of the electron effective mass is also observed. From 
Fig. 5(d) and Table S2, we can arrive at a qualitative conclusion that the 
increasing uniaxial or biaxial strain at a critical point can cause the 
increasing mass ratios, while the anisotropy is found to be practically 
unchanged under isotropic strain (see Fig. 5(c)). Since the electron 
mobility μ = qτ/m*

c is determined by electron effective mass, it is 
theoretically possible that the enhancement in the carrier mobility and 
electronic anisotropy can be achieved by increasing strain, with the 
correlated modulation on electron effective mass and mass ratios. 

Conclusion 

In summary, we have systematically studied the effect of strain on 
the crystal structure and electronic property of β-Ga2O3. It has been 
found that the bandgap monotonically decreases as the lattice constant 
increases in the isotropic strain case. However, in the case of uniaxial or 
biaxial strain, the bandgap decreases when the compressive strain ex-
ceeds a certain level. In most cases, for uniaxial or isotropic strain, 
β-Ga2O3 undergoes an indirect-to-direct bandgap transition under ten-
sile strain and remains indirect for compressive strain, whereas for the 
biaxial strain, the shift of bandgap directness exhibits an almost opposite 
trend. Besides bandgap, our effective mass calculations show that the 
electron effective mass generally features a negative correlation with 
strain. Notably, the anisotropy of electron effective mass shows an up-
ward trend in fluctuations under tension or compression. Our work can 
provide theoretical basis and experimental guidance for the develop-
ment of β-Ga2O3-based devices by strain engineering. 
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